
Congratulations, you sank my battleship!
Object oriented programming in R

Janina Torbecke
Inga Schwabe

5th TRUG meeting
January 16, 2014

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Outline

OOP

OOP in R

Battleship

Advantages &
disadvantages
of OOP in R

Other
applications

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Object oriented programming (OOP)

Objects

which

have attributes
have associated procedures (methods)
are usually instances of classes

For example..

A student, member of the class “Students” with attributes
name, age, grade

For different objects different methods
(e.g. generic function “plot”, different procedures for different
objects)

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

OOP in R

1 S3

2 S4

3 R5

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

The S4 system

Define an S4 class with setClass():

1 #Class Student:

2 setClass(Class = "Student",

3 representation(fullname = "character", age = "numeric"),

4 prototype(fullname = NA_character_, age = NA_real_))

Class The name of the class

Representation A named list of the slots (= class attributes)
indicating the class of each slot

Prototype An object with default data for the slot

Contains Names of the superclasses
(For inheritance purposes, explained later)

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

The S4 system

Create an instance/object of the class with new():

1 #New instance of the class "Student":

2 Gerd <- new("Student", fullname = "Gerd Jansen", age = 21)

3 Jan <- new("Student", fullname = "Jan van der Meulen", age = 19)

Access class slot by @ operator:

1 Gerd@fullname #Prints "Gerd Jansen"

2 Gerd@age #Prints "21"

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Methods and Generic Functions

Generic functions alllow different methods to be selected
corresponding to the classes of the objects supplied as an
argument in a call to the function

1 #Set your own generic function (e.g. How many sides has a shape?)

2 setGeneric(name = "sides", def = function(object){

3 standardGeneric("sides")}, valueClass = "character")

4
5 #standarGeneric() dispatches the method defined for a generic function

6
7 #Define different methods

8 setMethod("sides", signature("Triangle"), function(object) return("3"))

9 setMethod("sides", signature("Circle"), function(object) return("Infinite"))

10
11 > sides(new("Triangle"))

12 [1] "3"

13 > sides(new("Circle"))

14 [1] "Infinite"

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Inheritance

An object or class is based
on another object or class

Example: Graduate students
& undergraduate students
with partly same behavior

1 #Define superclass (other ways possible)

2 setIs("Undergraduate", "Student")

3
4 #Check relationship

5 extends("Undergraduate", "Student")

Inheritance of methods

1 Use callNextMethod() in setMethod()

Student

Graduate Undergr.

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Battleship: An application of the S4 system

1 #New class "Ship"

2 setClass("Ship", representation(posX = "numeric",

3 posY = "numeric", found = "logical"), prototype(found = FALSE))

4
5 #New Ship:

6 ships <- list()

7 ships[1] <- new("Ship", posX = sample(1:nRow,1),

8 posY = sample(1:nCol,1))

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Battleship: An application of the S4 system

1 for(i in 2:nships) {

2 foundPos <- FALSE

3 shipRow <- NA

4 shipCol <- NA

5
6 while(!foundPos){ #Loop continues until position of 1 ship is found

7 shipRow <- sample(1:nRow,1) #Random row nr

8 shipCol <- sample(1:nCol,1) #Random col nr

9
10 #Check if position is available

11 for(j in 1:length(ships)) { #Iterate over all ships in the list

12 foundPos <- !(ships[[j]]@posX == shipRow && ships[[j]]@posY == shipCol)

13 if(!foundPos) {

14 break

15 }

16 }

17 }

18 #New ship on available position

19 ships[i] <- new("Ship", posX = shipRow, posY = shipCol)

20 }

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Advantages & disadvantages of OOP in R

Advantages:

Enables the use of generic functions
(necessary in order to build your own R library)

Efficiently programming, e.g. elimination of redundant code
through inheritance

Neat code

Disadvantages:

Not always a big difference between OOP & functional
programming

Execution time may increase

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

Other (possible) applications

School data

Modelling of social networks

Cognitive psychology (e.g. neurons in neural network)

. . .

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

S4 Key functions

setClass() Create new class

setIs() Define superclass of a class

extends() Check relationship(s) between classes

isClass() Check class name

is() Show all subclasses of a class

getClasses Show all classes of an object

removeClass() Remove class

@/slot() Access slots

slotNames() Show slot names

getSlots() Show slot names + their classes

setGeneric() Create new generic function

setMethod() Define new method

methods() Show all methods of a generic function

Janina Torbecke Inga Schwabe Congratulations, you sank my battleship!

