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Object oriented programming (OOP)

Objects

which

have attributes
have associated procedures (methods)
are usually instances of classes

For example..

A student, member of the class “Students” with attributes
name, age, grade

For different objects different methods
(e.g. generic function “plot”, different procedures for different
objects)
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OOP in R

1 S3

2 S4

3 R5
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The S4 system

Define an S4 class with setClass():

1 #Class Student:

2 setClass(Class = "Student",

3 representation(fullname = "character", age = "numeric"),

4 prototype(fullname = NA_character_, age = NA_real_))

Class The name of the class

Representation A named list of the slots ( = class attributes)
indicating the class of each slot

Prototype An object with default data for the slot

Contains Names of the superclasses
(For inheritance purposes, explained later)
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The S4 system

Create an instance/object of the class with new():

1 #New instance of the class "Student":

2 Gerd <- new("Student", fullname = "Gerd Jansen", age = 21)

3 Jan <- new("Student", fullname = "Jan van der Meulen", age = 19)

Access class slot by @ operator:

1 Gerd@fullname #Prints "Gerd Jansen"

2 Gerd@age #Prints "21"
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Methods and Generic Functions

Generic functions alllow different methods to be selected
corresponding to the classes of the objects supplied as an
argument in a call to the function

1 #Set your own generic function (e.g. How many sides has a shape?)

2 setGeneric(name = "sides", def = function(object){

3 standardGeneric("sides")}, valueClass = "character")

4
5 #standarGeneric() dispatches the method defined for a generic function

6
7 #Define different methods

8 setMethod("sides", signature("Triangle"), function(object) return("3"))

9 setMethod("sides", signature("Circle"), function(object) return("Infinite"))

10
11 > sides(new("Triangle"))

12 [1] "3"

13 > sides(new("Circle"))

14 [1] "Infinite"
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Inheritance

An object or class is based
on another object or class

Example: Graduate students
& undergraduate students
with partly same behavior

1 #Define superclass (other ways possible)

2 setIs("Undergraduate", "Student")

3
4 #Check relationship

5 extends("Undergraduate", "Student")

Inheritance of methods

1 Use callNextMethod() in setMethod()

Student

Graduate Undergr.
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Battleship: An application of the S4 system

1 #New class "Ship"

2 setClass("Ship", representation(posX = "numeric",

3 posY = "numeric", found = "logical"), prototype(found = FALSE))

4
5 #New Ship:

6 ships <- list()

7 ships[1] <- new("Ship", posX = sample(1:nRow,1),

8 posY = sample(1:nCol,1))
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Battleship: An application of the S4 system

1 for(i in 2:nships) {

2 foundPos <- FALSE

3 shipRow <- NA

4 shipCol <- NA

5
6 while(!foundPos){ #Loop continues until position of 1 ship is found

7 shipRow <- sample(1:nRow,1) #Random row nr

8 shipCol <- sample(1:nCol,1) #Random col nr

9
10 #Check if position is available

11 for(j in 1:length(ships)) { #Iterate over all ships in the list

12 foundPos <- !(ships[[j]]@posX == shipRow && ships[[j]]@posY == shipCol)

13 if(!foundPos) {

14 break

15 }

16 }

17 }

18 #New ship on available position

19 ships[i] <- new("Ship", posX = shipRow, posY = shipCol)

20 }
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Advantages & disadvantages of OOP in R

Advantages:

Enables the use of generic functions
(necessary in order to build your own R library)

Efficiently programming, e.g. elimination of redundant code
through inheritance

Neat code

Disadvantages:

Not always a big difference between OOP & functional
programming

Execution time may increase
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Other (possible) applications

School data

Modelling of social networks

Cognitive psychology (e.g. neurons in neural network)

. . .
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S4 Key functions

setClass() Create new class

setIs() Define superclass of a class

extends() Check relationship(s) between classes

isClass() Check class name

is() Show all subclasses of a class

getClasses Show all classes of an object

removeClass() Remove class

@/slot() Access slots

slotNames() Show slot names

getSlots() Show slot names + their classes

setGeneric() Create new generic function

setMethod() Define new method

methods() Show all methods of a generic function
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