
Data manipulation with dplyr

Martin Schmettow

TRUG meeting, Enschede, June 25, 2014

DPLYR

Basics

dplyr

 The new coup of Hadley Wickham, creator of

 ggplot2

 plyr

plyr

 functional programming paradigm

 Functions as parameters of second level functions

 llply(some.list, some.function) # returns list

 laply(some.list, some.function) # returns array

 aaply(some.array, some.function) # returns array

 ...

 replaces classic second level functions: apply, lapply,
sapply, replicate

dplyr

 Simple interface

 Readable code

 Fast

 Can transparently deal with remote data

 interfaces well with plyr andggplot

next generation data.frame manipulation

Basic elements of plyr

 Functions:

 Filter

 Select

Mutate

 Group_by

 Summarize

 Arrange

 Operator

 Concatenation by %.% or %>%

Example 1: filter some observations

Classic

D[S$subject == 4 & D$trial == 10,]

dplyr

filter(D, subject == 4, trial == 10)

Example 2: select some variables

Classic

D[,c(“subject“, “trial“)]

dplyr

select(D, subject, trial)

Example 3: add a variable

Classic

D$freq <- D$count/D$time

dplyr

D <- mutate(D, freq = count/time)

Example 4: summarize data

Classic

aggregate(D$RT, list(subject =
D$Subject), mean)

dplyr

group_by(D, subject) %.%
summarize(totalcount = sum(count))

Example 5: order data

Classic

D[order(D$subject, D$trial),]

dplyr

arrange(D, subject, trial)

DPLYR

Pipelining

Piping commands with %.%

 select(D, subject, trial, count, time) %.%
manipulate(freq = count/time) %.%
group_by(subject) %.%
summarize(avgfreq = mean(freq))

 You can even:
D %.% select(subject, trial, count, time) %.% ...

 Or:
read.spss(“D.sav“, to.data.frame = T) %.%
select(subject, trial, count, time)

Interfacing with ggplot

D%.%
mutate(freq = count/time) %.%
ggplot(aes(participant, freq))

This seems to work for all functions that take the data.rame
as first argument

Interfacing with lm

lm(formula, data) data.frame not first arg

New in dplyr: %>% (magrittr)

D%>%
mutate(freq = count/time) %>%
lm(freq ~ age, data = .) %>%
summary()

PRINCIPLES OF DATA

MODELLING

Tables, Keys, Redundancy

Subj Gender Word Picture RT

1 m speak robo 1 352

1 m speak robo 2 789

1 m beep robo 1 435

1 m beep robo 2 978

2 f speak robo 1 1423

2 f speak robo 2 1453

2 f beep robo 1 983

2 f beep robo 2 1234

 Key: smallest combination of
variables that identifies an
observation

 Redundancy: value of one
column is strictly determined by
another column

Avoiding redundancy

Subj Word Picture RT

1 speak robo 1 352

1 speak robo 2 789

1 beep robo 1 435

1 beep robo 2 978

2 speak robo 1 1423

2 speak robo 2 1453

2 beep robo 1 983

2 beep robo 2 1234

Subj Gender

1 m

2 f

re-joining

join(ExperimentalData,
SubjectData,
by = Subj)

In data modeling speak, this is a
1:n relation with
Subj as foreign key

join commands supplied by plyr

Subj Gender Word Picture RT

1 m speak robo 1 352

1 m speak robo 2 789

1 m beep robo 1 435

1 m beep robo 2 978

2 f speak robo 1 1423

2 f speak robo 2 1453

2 f beep robo 1 983

2 f beep robo 2 1234

TIPPS & TRICKS

plyr and dplyr

 Always load plyr first
library(plyr)
library(dplyr)

 If accidentally done wrong: Restart R

 plyr even warns you

Renaming a column

Classic

D <- read.spss(“D.sav”, to.data.frame = T)

D$participant <- D$proefpersoon

D$proefpersoon <- NULL

dplyr

D <- read.spss(“D.sav”, to.data.frame = T) %.%

select(participant = proefpersoon, trial:time)

