
Data manipulation with dplyr

Martin Schmettow

TRUG meeting, Enschede, June 25, 2014

DPLYR

Basics

dplyr

 The new coup of Hadley Wickham, creator of

 ggplot2

 plyr

plyr

 functional programming paradigm

 Functions as parameters of second level functions

 llply(some.list, some.function) # returns list

 laply(some.list, some.function) # returns array

 aaply(some.array, some.function) # returns array

 ...

 replaces classic second level functions: apply, lapply,
sapply, replicate

dplyr

 Simple interface

 Readable code

 Fast

 Can transparently deal with remote data

 interfaces well with plyr andggplot

next generation data.frame manipulation

Basic elements of plyr

 Functions:

 Filter

 Select

Mutate

 Group_by

 Summarize

 Arrange

 Operator

 Concatenation by %.% or %>%

Example 1: filter some observations

Classic

D[S$subject == 4 & D$trial == 10,]

dplyr

filter(D, subject == 4, trial == 10)

Example 2: select some variables

Classic

D[,c(“subject“, “trial“)]

dplyr

select(D, subject, trial)

Example 3: add a variable

Classic

D$freq <- D$count/D$time

dplyr

D <- mutate(D, freq = count/time)

Example 4: summarize data

Classic

aggregate(D$RT, list(subject =
D$Subject), mean)

dplyr

group_by(D, subject) %.%
summarize(totalcount = sum(count))

Example 5: order data

Classic

D[order(D$subject, D$trial),]

dplyr

arrange(D, subject, trial)

DPLYR

Pipelining

Piping commands with %.%

 select(D, subject, trial, count, time) %.%
manipulate(freq = count/time) %.%
group_by(subject) %.%
summarize(avgfreq = mean(freq))

 You can even:
D %.% select(subject, trial, count, time) %.% ...

 Or:
read.spss(“D.sav“, to.data.frame = T) %.%
select(subject, trial, count, time)

Interfacing with ggplot

D%.%
mutate(freq = count/time) %.%
ggplot(aes(participant, freq))

This seems to work for all functions that take the data.rame
as first argument

Interfacing with lm

lm(formula, data) data.frame not first arg

New in dplyr: %>% (magrittr)

D%>%
mutate(freq = count/time) %>%
lm(freq ~ age, data = .) %>%
summary()

PRINCIPLES OF DATA

MODELLING

Tables, Keys, Redundancy

Subj Gender Word Picture RT

1 m speak robo 1 352

1 m speak robo 2 789

1 m beep robo 1 435

1 m beep robo 2 978

2 f speak robo 1 1423

2 f speak robo 2 1453

2 f beep robo 1 983

2 f beep robo 2 1234

 Key: smallest combination of
variables that identifies an
observation

 Redundancy: value of one
column is strictly determined by
another column

Avoiding redundancy

Subj Word Picture RT

1 speak robo 1 352

1 speak robo 2 789

1 beep robo 1 435

1 beep robo 2 978

2 speak robo 1 1423

2 speak robo 2 1453

2 beep robo 1 983

2 beep robo 2 1234

Subj Gender

1 m

2 f

re-joining

join(ExperimentalData,
SubjectData,
by = Subj)

In data modeling speak, this is a
1:n relation with
Subj as foreign key

join commands supplied by plyr

Subj Gender Word Picture RT

1 m speak robo 1 352

1 m speak robo 2 789

1 m beep robo 1 435

1 m beep robo 2 978

2 f speak robo 1 1423

2 f speak robo 2 1453

2 f beep robo 1 983

2 f beep robo 2 1234

TIPPS & TRICKS

plyr and dplyr

 Always load plyr first
library(plyr)
library(dplyr)

 If accidentally done wrong: Restart R

 plyr even warns you

Renaming a column

Classic

D <- read.spss(“D.sav”, to.data.frame = T)

D$participant <- D$proefpersoon

D$proefpersoon <- NULL

dplyr

D <- read.spss(“D.sav”, to.data.frame = T) %.%

select(participant = proefpersoon, trial:time)

